Problem: a__f(a(),X,X) -> a__f(X,a__b(),b()) a__b() -> a() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) mark(b()) -> a__b() mark(a()) -> a() a__f(X1,X2,X3) -> f(X1,X2,X3) a__b() -> b() Proof: Complexity Transformation Processor: strict: a__f(a(),X,X) -> a__f(X,a__b(),b()) a__b() -> a() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) mark(b()) -> a__b() mark(a()) -> a() a__f(X1,X2,X3) -> f(X1,X2,X3) a__b() -> b() weak: Matrix Interpretation Processor: dimension: 1 max_matrix: 1 interpretation: [mark](x0) = x0, [f](x0, x1, x2) = x0 + x1 + x2 + 8, [b] = 0, [a__b] = 1, [a__f](x0, x1, x2) = x0 + x1 + x2 + 14, [a] = 4 orientation: a__f(a(),X,X) = 2X + 18 >= X + 15 = a__f(X,a__b(),b()) a__b() = 1 >= 4 = a() mark(f(X1,X2,X3)) = X1 + X2 + X3 + 8 >= X1 + X2 + X3 + 14 = a__f(X1,mark(X2),X3) mark(b()) = 0 >= 1 = a__b() mark(a()) = 4 >= 4 = a() a__f(X1,X2,X3) = X1 + X2 + X3 + 14 >= X1 + X2 + X3 + 8 = f(X1,X2,X3) a__b() = 1 >= 0 = b() problem: strict: a__b() -> a() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) mark(b()) -> a__b() mark(a()) -> a() weak: a__f(a(),X,X) -> a__f(X,a__b(),b()) a__f(X1,X2,X3) -> f(X1,X2,X3) a__b() -> b() Matrix Interpretation Processor: dimension: 1 max_matrix: 1 interpretation: [mark](x0) = x0 + 57, [f](x0, x1, x2) = x0 + x1 + x2 + 16, [b] = 0, [a__b] = 0, [a__f](x0, x1, x2) = x0 + x1 + x2 + 16, [a] = 0 orientation: a__b() = 0 >= 0 = a() mark(f(X1,X2,X3)) = X1 + X2 + X3 + 73 >= X1 + X2 + X3 + 73 = a__f(X1,mark(X2),X3) mark(b()) = 57 >= 0 = a__b() mark(a()) = 57 >= 0 = a() a__f(a(),X,X) = 2X + 16 >= X + 16 = a__f(X,a__b(),b()) a__f(X1,X2,X3) = X1 + X2 + X3 + 16 >= X1 + X2 + X3 + 16 = f(X1,X2,X3) a__b() = 0 >= 0 = b() problem: strict: a__b() -> a() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) weak: mark(b()) -> a__b() mark(a()) -> a() a__f(a(),X,X) -> a__f(X,a__b(),b()) a__f(X1,X2,X3) -> f(X1,X2,X3) a__b() -> b() Splitting Processor: strict: a__b() -> a() weak: mark(b()) -> a__b() mark(a()) -> a() a__f(a(),X,X) -> a__f(X,a__b(),b()) a__f(X1,X2,X3) -> f(X1,X2,X3) a__b() -> b() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) Matrix Interpretation Processor: dimension: 4 max_matrix: [1 1 0 1] [0 1 0 0] [0 0 0 1] [0 0 0 0] interpretation: [1 1 0 0] [0] [0 1 0 0] [1] [mark](x0) = [0 0 0 0]x0 + [0] [0 0 0 0] [0], [1 0 0 0] [1 0 0 0] [1 0 0 1] [0] [0 0 0 0] [0 1 0 0] [0 1 0 0] [1] [f](x0, x1, x2) = [0 0 0 0]x0 + [0 0 0 0]x1 + [0 0 0 0]x2 + [0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0], [0] [0] [b] = [0] [0], [0] [0] [a__b] = [0] [0], [1 0 0 0] [1 0 0 0] [1 1 0 1] [0] [0 0 0 0] [0 1 0 0] [0 1 0 0] [1] [a__f](x0, x1, x2) = [0 0 0 0]x0 + [0 0 0 1]x1 + [0 0 0 0]x2 + [0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0], [0] [0] [a] = [0] [0] orientation: [1 0 0 0] [1 1 0 0] [1 1 0 1] [1] [1 0 0 0] [1 1 0 0] [1 1 0 1] [0] [0 0 0 0] [0 1 0 0] [0 1 0 0] [2] [0 0 0 0] [0 1 0 0] [0 1 0 0] [2] mark(f(X1,X2,X3)) = [0 0 0 0]X1 + [0 0 0 0]X2 + [0 0 0 0]X3 + [0] >= [0 0 0 0]X1 + [0 0 0 0]X2 + [0 0 0 0]X3 + [0] = a__f(X1,mark(X2),X3) [0 0 0 0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0] [0] [0] [0] [0] a__b() = [0] >= [0] = a() [0] [0] [0] [0] [1] [0] mark(b()) = [0] >= [0] = a__b() [0] [0] [0] [0] [1] [0] mark(a()) = [0] >= [0] = a() [0] [0] [2 1 0 1] [0] [1 0 0 0] [0] [0 2 0 0] [1] [0 0 0 0] [1] a__f(a(),X,X) = [0 0 0 1]X + [0] >= [0 0 0 0]X + [0] = a__f(X,a__b(),b()) [0 0 0 0] [0] [0 0 0 0] [0] [1 0 0 0] [1 0 0 0] [1 1 0 1] [0] [1 0 0 0] [1 0 0 0] [1 0 0 1] [0] [0 0 0 0] [0 1 0 0] [0 1 0 0] [1] [0 0 0 0] [0 1 0 0] [0 1 0 0] [1] a__f(X1,X2,X3) = [0 0 0 0]X1 + [0 0 0 1]X2 + [0 0 0 0]X3 + [0] >= [0 0 0 0]X1 + [0 0 0 0]X2 + [0 0 0 0]X3 + [0] = f(X1,X2,X3) [0 0 0 0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0] [0] [0] [0] [0] a__b() = [0] >= [0] = b() [0] [0] problem: strict: weak: mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) a__b() -> a() mark(b()) -> a__b() mark(a()) -> a() a__f(a(),X,X) -> a__f(X,a__b(),b()) a__f(X1,X2,X3) -> f(X1,X2,X3) a__b() -> b() Qed strict: mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) weak: a__b() -> a() mark(b()) -> a__b() mark(a()) -> a() a__f(a(),X,X) -> a__f(X,a__b(),b()) a__f(X1,X2,X3) -> f(X1,X2,X3) a__b() -> b() Matrix Interpretation Processor: dimension: 3 max_matrix: [1 1 1] [0 0 0] [0 0 0] interpretation: [1 0 0] [0] [mark](x0) = [0 0 0]x0 + [1] [0 0 0] [1], [1 1 1] [1 0 0] [1 1 1] [f](x0, x1, x2) = [0 0 0]x0 + [0 0 0]x1 + [0 0 0]x2 [0 0 0] [0 0 0] [0 0 0] , [1] [b] = [0] [0], [1] [a__b] = [1] [1], [1 1 1] [1 0 0] [1 1 1] [a__f](x0, x1, x2) = [0 0 0]x0 + [0 0 0]x1 + [0 0 0]x2 [0 0 0] [0 0 0] [0 0 0] , [0] [a] = [1] [1] orientation: [1] [0] a__b() = [1] >= [1] = a() [1] [1] [1] [1] mark(b()) = [1] >= [1] = a__b() [1] [1] [0] [0] mark(a()) = [1] >= [1] = a() [1] [1] [2 1 1] [2] [1 1 1] [2] a__f(a(),X,X) = [0 0 0]X + [0] >= [0 0 0]X + [0] = a__f(X,a__b(),b()) [0 0 0] [0] [0 0 0] [0] [1 1 1] [1 0 0] [1 1 1] [1 1 1] [1 0 0] [1 1 1] a__f(X1,X2,X3) = [0 0 0]X1 + [0 0 0]X2 + [0 0 0]X3 >= [0 0 0]X1 + [0 0 0]X2 + [0 0 0]X3 = f(X1,X2,X3) [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [1] [1] a__b() = [1] >= [0] = b() [1] [0] [1 1 1] [1 0 0] [1 1 1] [0] [1 1 1] [1 0 0] [1 1 1] mark(f(X1,X2,X3)) = [0 0 0]X1 + [0 0 0]X2 + [0 0 0]X3 + [1] >= [0 0 0]X1 + [0 0 0]X2 + [0 0 0]X3 = a__f(X1,mark(X2),X3) [0 0 0] [0 0 0] [0 0 0] [1] [0 0 0] [0 0 0] [0 0 0] problem: strict: weak: a__b() -> a() mark(b()) -> a__b() mark(a()) -> a() a__f(a(),X,X) -> a__f(X,a__b(),b()) a__f(X1,X2,X3) -> f(X1,X2,X3) a__b() -> b() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) Qed